「曹瑋」砷磷化銦變晶緩衝層之短波長紅外線偵測器的製程與特性研究

陸生 R06 曹瑋 Wei Cao
系所 臺灣大學電子工程學研究所學位論文
指導教授 林浩雄
中文題名 砷磷化銦變晶緩衝層之短波長紅外線偵測器的製程與特性研究
英文題名 Study on Fabrication and Characteristics of InAsyP1-y Metamorphic Buffer Layers for SWIR Photodetector
中文關鍵字 短波長紅外線;偵測器;變晶緩衝層;砷化銦鎵;磷砷化銦
英文關鍵字 SWIR;photodetector;metamorphic buffer layer;InGaAs;InAsP
中文摘要 本論文係分析短波長紅外線偵測器之製程和光電特性。我們設計了兩種波段的偵測器,分別為1.9 μm 和2.2 μm 短波長紅外線波段偵測器,是以 InGaAs 材料做為光吸收層,在 N+ InP 基板之上開發InAsP變晶成長(metamorphic)技術,使用多層的階梯式漸變緩衝層(step-graded buffers),再利用鋅擴散(Zn-diffusion)製程,以成長不具應變的 InAsP/InGaAs PIN 二極體磊晶結構,最後通過黃光製程和金屬蒸鍍得到完整的短波長紅外線波段偵測器。我們以穿透式電子顯微鏡截面影像(TEM cross-section imaging) 研究 InAsP 變晶緩衝層和 InGaAs 光吸收層的厚度大小。並以室溫的光激發螢光頻譜(PL)、光反應頻譜(Spectral response)以及電性量測(I-V curve)和電容量測(CV curve),檢驗元件光電特性。 利用 TEM 技術,來觀察元件的(110)截面圖,我們發現此結構能夠將錯配差排(misfit dislocation)限制在鬆弛層,並且在光吸收層 InGaAs 中未觀察到穿隧差排(threading dislocation)。我們將製程完成之元件進行進行室溫 300K的光激發螢光頻譜量測,量測光吸收層 InGaAs 之能隙 ,並且回推 InGaAs 合金的彎曲參數(bowing parameter) C。接著我們利用光反應頻譜來測定了元件的光回應度,以及其截止波長和量子效率。我們對元件進行了 I-V 量測,並利用理論的電流公式進行擬合;通過 I-V curve的計算我們得到了元件的探測率大小和 R0A大小。此外我們還對元件進行了 CV 量測,並根據 MOS 理論為基礎,推導出了本元件的等效電路,得到了未受到缺陷影響的 C-V,並且求出了元件的內建電位大小和元件摻雜濃度。
英文摘要 In this paper, the fabrication process and photoelectric characteristics of short wavelength infrared detector are analyzed. We have designed two detectors with bandgap of 1.9 μm and 2.2 μm respectively. We used InGaAs as an absorption layer and developed InAsP on the N + InP substrate by metamorphic growth. Zinc diffusion, lithography and metal deposition processes are used to develop multiple layers of step-graded buffers into strain-free, short-wavelength infrared band detector InAsP/InGaAs PIN diode. We used TEM cross-section imaging to study the thickness of InAsP metamorphic buffer layer and InGaAs absorption layer. The photoelectric characteristics of components were tested with Photoluminescence spectrum (PL), Spectral response, I-V curve and C-V curve at room temperature. In TEM (110) section, we found that this structure will limit the misfit dislocations in the buffer layer, and threading dislocation was not observed in the absorption layer. We obtained energy gap of InGaAs absoprtion layer and the bowing parameter C of InGaAs alloy with PL in 300K. Then we used the response spectrum to measure devices’ light responsivity, cut-off wavelength and quantum efficiency. We measured the I-V curve and fitted them with the theoretical current formula. Through the calculation of I-V curve, we obtained the detectivity and R0A of the device. In addition, we also measured the C-V curve of the device, and deduced the equivalent circuit of the element based on the MOS theory. The measured C-V is not affected by the defect, the built-in potential and doping concentration of the device are also calculated.
出版日期 2019-07-11
DOI 10.6342/NTU201901149
DocID U0001-0107201901411100